112 research outputs found

    Generalised Nonorthogonal Matrix Elements: Unifying Wick's Theorem and the Slater-Condon Rules

    Full text link
    Matrix elements between nonorthogonal Slater determinants represent an essential component of many emerging electronic structure methods. However, evaluating nonorthogonal matrix elements is conceptually and computationally harder then their orthogonal counterparts. While several different approaches have been developed, these are predominantly derived from the first-quantised generalised Slater-Condon rules and usually require biorthogonal occupied orbitals to be computed for each matrix element. For coupling terms between nonorthogonal excited configurations, a second-quantised approach such as the nonorthogonal Wick's theorem is more desirable, but this fails when the two reference determinants have a zero many-body overlap. In this contribution, we derive an entirely generalised extension to the nonorthogonal Wick's theorem that is applicable to all pairs of determinants with nonorthogonal orbitals. Our approach creates a universal methodology for evaluating any nonorthogonal matrix element and allows Wick's theorem and the generalised Slater-Condon rules to be unified for the first time. Furthermore, we present a simple well-defined protocol for deriving arbitrary coupling terms between nonorthogonal excited configurations. In the case of overlap and one-body operators, this protocol recovers efficient formulae with reduced scaling, promising significant computational acceleration for methods that rely on such terms.Comment: 17 pages, 0 figure

    Excited states, symmetry breaking, and unphysical solutions in state-specific CASSCF theory

    Full text link
    State-specific electronic structure theory provides a route towards balanced excited-state wave functions by exploiting higher-energy stationary points of the electronic energy. Multiconfigurational wave function approximations can describe both closed- and open-shell excited states and avoid the issues associated with state-averaged approaches. We investigate the existence of higher-energy solutions in complete active space self-consistent field (CASSCF) theory and characterise their topological properties. We demonstrate that state-specific approximations can provide accurate higher-energy excited states in H2\mathrm{H}_2 (6-31G) with more compact active spaces than would be required in a state-averaged formalism. We then elucidate the unphysical stationary points, demonstrating that they arise from redundant orbitals when the active space is too large, or symmetry breaking when the active space is too small. Furthermore, we investigate the conical intersection in CH2\mathrm{CH}_2 (6-31G) and the avoided crossing in LiF\mathrm{LiF} (6-31G), revealing the severity of root flipping and demonstrating that state-specific solutions can behave quasi-diabatically or adiabatically. These results elucidate the complexity of the CASSCF energy landscape, highlighting the advantages and challenges of practical state-specific calculations.Comment: 14 pages, 8 figure

    Perturbation Theory in the Complex Plane: Exceptional Points and Where to Find Them

    Full text link
    We explore the non-Hermitian extension of quantum chemistry in the complex plane and its link with perturbation theory. We observe that the physics of a quantum system is intimately connected to the position of complex-valued energy singularities, known as exceptional points. After presenting the fundamental concepts of non-Hermitian quantum chemistry in the complex plane, including the mean-field Hartree--Fock approximation and Rayleigh--Schr\"odinger perturbation theory, we provide a historical overview of the various research activities that have been performed on the physics of singularities. In particular, we highlight seminal work on the convergence behaviour of perturbative series obtained within M{\o}ller--Plesset perturbation theory, and its links with quantum phase transitions. We also discuss several resummation techniques (such as Pad\'e and quadratic approximants) that can improve the overall accuracy of the M{\o}ller--Plesset perturbative series in both convergent and divergent cases. Each of these points is illustrated using the Hubbard dimer at half filling, which proves to be a versatile model for understanding the subtlety of analytically-continued perturbation theory in the complex plane.Comment: 22 page, 14 figures, 4 table

    Variations of the Hartree-Fock fractional-spin error for one electron

    Full text link
    Fractional-spin errors are inherent in all current approximate density functionals, including Hartree-Fock theory, and their origin has been related to strong static correlation effects. The conventional way to encode fractional-spin calculations is to construct an ensemble density that scales between the high-spin and low-spin densities. In this article, we explore the variation of the Hartree-Fock fractional-spin (or ghost-interaction) error in one-electron systems using restricted and unrestricted ensemble densities, and the exact generalized Hartree-Fock representation. By considering the hydrogen atom and H2+_2^+ cation, we analyze how the unrestricted and generalized Hartree-Fock schemes minimize this error by localizing the electrons or rotating the spin coordinates. We also reveal a clear similarity between the Coulomb hole of He-like ions and the density depletion near the nucleus induced by the fractional-spin error in the unpolarized hydrogen atom. Finally, we analyze the effect of the fractional-spin error on the M{\o}ller-Plesset adiabatic connection, excited states, and functional- and density-driven errors.Comment: 12 pages, 9 figure

    Holomorphic Hartree-Fock Theory: The Nature of Two-Electron Problems.

    Get PDF
    We explore the existence and behavior of holomorphic restricted Hartree-Fock (h-RHF) solutions for two-electron problems. Through algebraic geometry, the exact number of solutions with n basis functions is rigorously identified as 1/2(3n - 1), proving that states must exist for all molecular geometries. A detailed study on the h-RHF states of HZ (STO-3G) then demonstrates both the conservation of holomorphic solutions as geometry or atomic charges are varied and the emergence of complex h-RHF solutions at coalescence points. Using catastrophe theory, the nature of these coalescence points is described, highlighting the influence of molecular symmetry. The h-RHF states of HHeH2+ and HHeH (STO-3G) are then compared, illustrating the isomorphism between systems with two electrons and two electron holes. Finally, we explore the h-RHF states of ethene (STO-3G) by considering the π electrons as a two-electron problem and employ NOCI to identify a crossing of the lowest energy singlet and triplet states at the perpendicular geometry

    Estimating the global cost of vision impairment and its major causes: protocol for a systematic review

    Get PDF
    Introduction: Vision impairment (VI) places a burden on individuals, health systems and society in general. In order to support the case for investing in eye health services, an updated cost of illness study that measures the global impact of VI is necessary. To perform such a study, a systematic review of the literature is needed. Here we outline the protocol for a systematic review to describe and summarise the costs associated with VI and its major causes. Methods and analysis: We will systematically search in Medline (Ovid) and the Centre for Reviews and Dissemination database which includes the National Health Service Economics Evaluation Database. No language or geographical restriction will be applied. Additional literature will be identified by reviewing the references in the included studies and by contacting field experts. Grey literature will be considered. The review will include any study published from 1 January 2000 to November 2019 that provides information about costs of illness, burden of disease and/or loss of well-being in participants with VI due to an unspecified cause or due to one of the seven leading causes globally. Two reviewers will independently screen studies and extract relevant data from included studies. Methodological quality of economic studies will be assessed based on the British Medical Journal checklist for economic submissions adapted to costs of illness studies. This protocol has been prepared following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis protocols and has been published prospectively in Open Science Framework. Ethics and dissemination Formal ethical approval is not required, as primary data will not be collected in this review. The findings of this study will be disseminated through peer-reviewed publications, stakeholder meetings and inclusion in the ongoing Lancet Global Health Commission on Global Eye Health. Registration details https://osf.io/9au3w (DOI 10.17605/OSF.IO/6F8VM)

    Gluons and the quark sea at high energies: distributions, polarization, tomography

    Get PDF
    This report is based on a ten-week program on "Gluons and the quark sea at high-energies", which took place at the Institute for Nuclear Theory in Seattle in Fall 2010. The principal aim of the program was to develop and sharpen the science case for an Electron-Ion Collider (EIC), a facility that will be able to collide electrons and positrons with polarized protons and with light to heavy nuclei at high energies, offering unprecedented possibilities for in-depth studies of quantum chromodynamics. This report is organized around four major themes: i) the spin and flavor structure of the proton, ii) three-dimensional structure of nucleons and nuclei in momentum and configuration space, iii) QCD matter in nuclei, and iv) Electroweak physics and the search for physics beyond the Standard Model. Beginning with an executive summary, the report contains tables of key measurements, chapter overviews for each of the major scientific themes, and detailed individual contributions on various aspects of the scientific opportunities presented by an EIC.Comment: 547 pages, A report on the joint BNL/INT/Jlab program on the science case for an Electron-Ion Collider, September 13 to November 19, 2010, Institute for Nuclear Theory, Seattle; v2 with minor changes, matches printed versio
    corecore